Abstract :
The copolymerization of methyl acrylate (MA) and glycidyl methacrylate (GMA) with 1-hexene was carried out using activator regenerator by electron transfer atom transfer radical polymerization (ARGET ATRP) employing Cu(0)/CuBr2 as a catalyst, pentamethyl diethylenetriamine (PMDETA) as a ligand, and ethyl 2-bromoisopropionate (EBriP) as the initiator, all at a reaction temperature of 70°C. This process resulted in the production of viscous and transparent copolymers, namely poly (methyl acrylate-co-1-hexene) or PMH and poly (glycidyl methacrylate co-1-hexene) or PGMH. For the MA/1-Hex copolymer, conversion rates ranged from a maximum of 31 wt.% to a minimum of 12 wt.%, while the GMA/1-hexene copolymer exhibited conversion rates ranging from a maximum of 42 wt.% to a minimum of 12 wt.%. It was observed that increasing the amount of 1-hexene during the synthesis led to a higher incorporation of 1-hexene content in both the MA and GMA polymer backbones, with a maximum of 15 wt.% and 18 wt.% of 1-hexene being incorporated into PMH and PGMH, respectively. The incorporation of 1-hexene was confirmed through Nuclear Magnetic Resonance (NMR) studies, including 1 H, 13C, and DEPT 135 studies. Additionally, the copolymer PMH and PGMH exhibited monomodal molecular weight distribution curves when evaluated using the size exclusion chromatography (SEC) high-performance liquid chromatography (HPLC) technique, with polydispersity values in the range of 1.19-1.37 and 1.07-1.11, respectively. These findings indicate that the copolymerization process was well-controlled and followed a radical polymerization mechanism.
Keywords :
ARGET ATRP , methyl acrylate , glycidyl methacrylate , 1 , hexene , control radical polymerization (CRP)