Title of article :
Semi-Fredholmness on a weighted geometric realization of 2-simplexes and 3- simplexes
Author/Authors :
Baalal ، Azeddine Laboratoire de Mathematiques Fondamentales et Appliqu´ees, Departement de Math´ematiques et Informatique - Faculte des Sciences Aın Chock - Universite Hassan II de Casablanca , Hatim ، Khalid Laboratoire de Mathematiques Fondamentales et Appliquees - Faculte des Sciences Aın Chock - Universite Hassan II de Casablanca
Abstract :
In this present article, we introduce the notion of oriented $2$-simplexes and the notion of oriented $3$-simplexes and we use them to create a new framework that we call a weighted geometric realization of $2$-simplexes and $3$-simplexes. Next, we define the weighted geometric realization Gauss-Bonnet operator $L$. After that, we present and study the non-parabolicity at the infinity of $L$. Finally, we develop general conditions to ensure semi-Fredholmness of $L$ based on its non-parabolicity at infinity.
Keywords :
Weighted geometric realization of 2 , simplexes and 3 , simplexes , weighted geometric realization Gauss , Bonnet operator , non , parabolicity at infinity , semi , Fredholmness
Journal title :
International Journal of Nonlinear Analysis and Applications
Journal title :
International Journal of Nonlinear Analysis and Applications