Title of article :
∗-Lie–Jordan-Type Maps on C∗-Algebras
Author/Authors :
Ferreira ، Bruno Leonardo Macedo Department of Pure Mathematics - Federal University of Technology , Costa ، Bruno Tadeu Department of Pure Mathematics - Federal University of Santa Catarina
From page :
1679
To page :
1690
Abstract :
Let $\A$ and $\A $ be two $C^*$-algebras with identities $I_{\A}$ and $I_{\A }$, respectively, and $P_1$ and $P_2 = I_{\A} - P_1$ nontrivial projections in $\A$. In this paper we study the characterization of multiplicative $*$-Lie-Jordan-type maps, where the notion of these maps arise here. In particular, if $\mathcal{M}_{\A}$ is a von Neumann algebra relative $C^{*}$-algebra $\A$ without central summands of type $I_1$ then every bijective unital multiplicative $*$-Lie-Jordan-type maps are $*$-ring isomorphisms.
Keywords :
C* , algebra , Multiplicative , C* , Lie–Jordan , type maps
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2756974
Link To Document :
بازگشت