Author/Authors :
Zhang ، He Department of Mathematics - School of Mathematics and Statistics - Central South University , Chen ، Haibo Department of Mathematics - School of Mathematics and Statistics - Central South University
Abstract :
In this paper, we study the following fractional Schr\ {o}dinger-Poisson system $$\begin{cases} (-\Delta)^{s}u+V(x)u+\phi u=(I_{\mu}*F(u))f(u),\quad \ {\rm in}\ \mathbb{R}^{3},\\ (-\Delta)^{s}\phi=u^{2}, \ {\rm in}\ \mathbb{R}^{3},\end{cases} $$where $ \mu\in (0,3),\ s\in (\frac{3}{4},1), I_\mu: \R^3\rightarrow \R$ is the Riesz potential,$V\in \mathcal{C}(\R^3,[0,+\infty),\ f\in \mathcal{C}(\R,\R)$.By using a monotonicity trick and global compactness lemma, we obtain the existence of a ground state solution for the above system.
Keywords :
Choquard equation , Pohozaev constraint , Ground state solution , Berestycki–Lions conditions