Title of article :
Hilbert–Poincaré Series and Gorenstein Property for Some Non-simple Polyominoes
Author/Authors :
Cisto ، Carmelo Dipartimento di Scienze Matematiche e Informatiche - Scienze Fisiche e Scienze della Terra - Università di Messina , Navarra ، Francesco Dipartimento di Scienze Matematiche e Informatiche - Scienze Fisiche e Scienze della Terra - Università di Messina , Utano ، Rosanna Dipartimento di Scienze Matematiche e Informatiche - Scienze Fisiche e Scienze della Terra - Università di Messina
Abstract :
Let P be a closed path having no zig-zag walks, a kind of non-simple thin polyomino. In this paper, we give a combinatorial interpretation of the h-polynomial of K[P], showing that it is the rook polynomial of P. It is known by Rinaldo and Romeo (J Algebr Comb 54:607–624, 2021), that if P is a simple thin polyomino, then the hpolynomial is equal to the rook polynomial of P and it is conjectured that this property characterizes all thin polyominoes. Our main demonstrative strategy is to compute the reduced Hilbert–Poincaré series of the coordinate ring attached to a closed path P having no zig-zagwalks, as a combination of the Hilbert–Poincaré series of convenient simple thin polyominoes.As a consequence, we prove that theKrull dimension is equal to |V(P)| − rank P and the regularity of K[P] is the rook number of P. Finally, we characterize the Gorenstein prime closed paths, proving that K[P] is Gorenstein if and only if P consists of maximal blocks of length three.
Keywords :
Polyominoes , Hilbert–Poincaré series , Rook polynomial , Gorenstein ,
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society