Title of article :
Generalized Kernels of Subsets through Ideals in Topological Spaces
Author/Authors :
Sanabria ، José Departamento de Matemàticas - Facultad de Educación y Ciencias - Universidad de Sucre , Maza ، Laura Facultad de Ciencias Bàsicas - Universidad del Atlántico , Rosas ، Ennis Departamento de Ciencias Naturales y Exactas - Universidad de la Costa , Carpintero ، Carlos Departamento de Ciencias Basicas - Corporacion Universitaria del Caribe-CECAR
Abstract :
In this research work, we introduce a generalization of the notion of kernel of a set in topological spaces endowed with an ideal, which is a fundamental tool to obtain new modifications of open sets and closed sets. Using this generalized kernel, we define and characterize new low separation axioms in other contexts obtained from a topological space endowed with an ideal. Also, we study the invariance of these low separation axioms under certain types of continuity defined in this novel theoretical framework.
Keywords :
Topological kernel , Ideals , Co , local function , (τ⋆ , τ •) , g , closed set , I , λ , closed set
Journal title :
Iranian Journal of Mathematical Sciences and Informatics (IJMSI)
Journal title :
Iranian Journal of Mathematical Sciences and Informatics (IJMSI)