Title of article :
Vertex-degree function index on tournaments
Author/Authors :
Bermudo ، Sergio Department of Economy, Quantitative Methods and Economic History - Pablo de Olavide University , Cruz ، Roberto Instituto de Matemáticas - Universidad de Antioquia , Rada ، Juan Instituto de Matemáticas - Universidad de Antioquia
Abstract :
Let $G$ be a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. For a real function $f$ defined on nonnegative real numbers, the vertex-degree function index $H_{f}(G)$ is defined as $$H_{f}(G)=\sum_{u\in V(G)}f(d_{u}).$$ In this paper we introduce the vertex-degree function index $H_{f}(D)$ of a digraph $D$. After giving some examples and basic properties of $H_{f}(D)$, we find the extremal values of $H_{f}$ among all tournaments with a fixed number of vertices, when $f$ is a continuous and convex (or concave) real function on $\left[ 0,+\infty \right)$.
Keywords :
Tournaments , Vertex , degree function index , Vertex , degree , based topological index
Journal title :
Communications in Combinatorics and Optimization
Journal title :
Communications in Combinatorics and Optimization