Title of article :
Relevance data for language models using maximum likelihood
Author/Authors :
Wu، Bin نويسنده , , Bodoff، David نويسنده , , Wong، K. Y. Michael نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2003
Pages :
-104
From page :
105
To page :
0
Abstract :
We present a preliminary empirical test of a maximum likelihood approach to using relevance data for training information retrieval (IR) parameters. Similar to language models, our method uses explicitly hypothesized distributions for documents and queries, but we add to this an explicitly hypothesized distribution for relevance judgments. The method unifies document-oriented and queryoriented views. Performance is better than the Rocchio heuristic for document and/or query modification. The maximum likelihood methodology also motivates a heuristic estimate of the MLE optimization. The method can be used to test competing hypotheses regarding the processes of authorsʹ term selection, searchersʹ term selection, and assessorsʹ relevancy judgments.
Keywords :
Patients
Journal title :
Journal of the American Society for Information Science and Technology
Serial Year :
2003
Journal title :
Journal of the American Society for Information Science and Technology
Record number :
35046
Link To Document :
بازگشت