Title of article :
Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle
Author/Authors :
Figueiredo، نويسنده , , M.A.T.، نويسنده , , Leitao، نويسنده , , J.M.N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
14
From page :
1089
To page :
1102
Abstract :
Discontinuity-preserving Bayesian image restoration typically involves two Markov random fields: one representing the image intensities/gray levels to be recovered and another one signaling discontinuities/edges to be preserved. The usual strategy is to perform joint maximum a posteriori (MAP) estimation of the image and its edges, which requires the specification of priors for both fields. In this paper, instead of taking an edge prior, we interpret discontinuities (in fact their locations) as deterministic unknown parameters of the compound Gauss–Markov random field (CGMRF), which is assumed to model the intensities. This strategy should allow inferring the discontinuity locations directly from the image with no further assumptions. However, an additional problem emerges: The number of parameters (edges) is unknown. To deal with it, we invoke the minimum description length (MDL) principle; according to MDL, the best edge configuration is the one that allows the shortest description of the image and its edges. Taking the other model parameters (noise and CGMRF variances) also as unknown, we propose a new unsupervised discontinuity-preserving image restoration criterion. Implementation is carried out by a continuation-type iterative algorithm which provides estimates of the number of discontinuities, their locations, the noise variance, the original image variance, and the original image itself (restored image). Experimental results with real and synthetic images are reported.
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
1997
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
395893
Link To Document :
بازگشت