Title of article :
Bayesian and regularization methods for hyperparameter estimation in image restoration
Author/Authors :
Molina، نويسنده , , R.، نويسنده , , Katsaggelos، نويسنده , , A.K.، نويسنده , , Mateos، نويسنده , , J. ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
16
From page :
231
To page :
246
Abstract :
In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appropriate than the MAP approach for the image restoration problem. We furthermore study the relationship between the evidence and an iterative approach resulting from the set theoretic regularization approach for estimating the two hyperparameters, or their ratio, defined as the regularization parameter. Finally the proposed algorithms are tested experimentally.
Keywords :
Hierarchical Bayesian models , image restoration , Parameter estimation , regularization.
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
1999
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396152
Link To Document :
بازگشت