Title of article :
Improved image decoding over noisy channels using minimum mean-squared estimation and a Markov mesh
Author/Authors :
MoonSeo Park، نويسنده , , Miller، نويسنده , , D.J. ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
5
From page :
863
To page :
867
Abstract :
Joint source-channel (JSC) decoding based on residual source redundancy is a technique for providing channel robustness to quantized data. Previous work assumed a model equivalent to viewing the encoder/noisy channel tandem as a discrete hidden Markov model (HMM) with transmitted indices the hidden states. Here, we generalize this HMM-based (1-D) approach for images, using the more powerful hidden Markov mesh random field (HMMRF) model. While previous state estimation methods for HMMRF’s base estimates on only a causal subset of the observed data, our new method uses both causal and anticausal subsets. For JSC-based image decoding, the new method provides significant benefits over several competing techniques.
Keywords :
Image coding , least mean square methods , Hidden Markov Models , joint sourcechannelcoding , Markov mesh model.
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
1999
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396209
Link To Document :
بازگشت