Title of article :
Wavelet-based image estimation: an empirical Bayes approach using Jeffreyʹs noninformative prior
Author/Authors :
Figueiredo، نويسنده , , M.A.T.، نويسنده , , Nowak، نويسنده , , R.D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
The sparseness and decorrelation properties of
the discrete wavelet transform have been exploited to develop
powerful denoising methods. However, most of these methods have
free parameters which have to be adjusted or estimated. In this
paper, we propose a wavelet-based denoising technique without
any free parameters; it is, in this sense, a “universal” method. Our
approach uses empirical Bayes estimation based on a Jeffreys’
noninformative prior; it is a step toward objective Bayesian
wavelet-based denoising. The result is a remarkably simple fixed
nonlinear shrinkage/thresholding rule which performs better than
other more computationally demanding methods.
Keywords :
Shrinkage , wavelets. , Bayesian estimation , Empirical Bayes , hierarchicalBayes , Image denoising , image estimation , invariance , Jeffreys’ priors , Noninformative priors
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING