Title of article :
Wavelet-based image estimation: an empirical Bayes approach using Jeffreyʹs noninformative prior
Author/Authors :
Figueiredo، نويسنده , , M.A.T.، نويسنده , , Nowak، نويسنده , , R.D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
10
From page :
1322
To page :
1331
Abstract :
The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. However, most of these methods have free parameters which have to be adjusted or estimated. In this paper, we propose a wavelet-based denoising technique without any free parameters; it is, in this sense, a “universal” method. Our approach uses empirical Bayes estimation based on a Jeffreys’ noninformative prior; it is a step toward objective Bayesian wavelet-based denoising. The result is a remarkably simple fixed nonlinear shrinkage/thresholding rule which performs better than other more computationally demanding methods.
Keywords :
Shrinkage , wavelets. , Bayesian estimation , Empirical Bayes , hierarchicalBayes , Image denoising , image estimation , invariance , Jeffreys’ priors , Noninformative priors
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
2001
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396655
Link To Document :
بازگشت