Title of article :
Generalized B-spline subdivision-surface wavelets for geometry compression
Author/Authors :
Bertram، نويسنده , , M.، نويسنده , , Duchaineau، نويسنده , , M.A.، نويسنده , , Hamann، نويسنده , , B.، نويسنده , , Joy، نويسنده , , K.I.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
13
From page :
326
To page :
338
Abstract :
We present a new construction of lifted biorthogonal wavelets on surfaces of arbitrary two-manifold topology for compression and multiresolution representation. Our method combines three approaches: subdivision surfaces of arbitrary topology, B-spline wavelets, and the lifting scheme for biorthogonal wavelet construction. The simple building blocks of our wavelet transform are local lifting operations performed on polygonal meshes with subdivision hierarchy. Starting with a coarse, irregular polyhedral base mesh, our transform creates a subdivision hierarchy of meshes converging to a smooth limit surface. At every subdivision level, geometric detail can be expanded from wavelet coefficients and added to the surface. We present wavelet constructions for bilinear, bicubic, and biquintic B-Spline subdivision. While the bilinear and bicubic constructions perform well in numerical experiments, the biquintic construction turns out to be unstable. For lossless compression, our transform can be computed in integer arithmetic, mapping integer coordinates of control points to integer wavelet coefficients. Our approach provides a highly efficient and progressive representation for complex geometries of arbitrary topology.
Keywords :
Arbitrary-topology meshes , biorthogonal wavelets , multiresolution methods , geometry compression , subdivisionsurfaces.
Journal title :
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Serial Year :
2004
Journal title :
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Record number :
401762
Link To Document :
بازگشت