Title of article :
Robust linear dimensionality reduction
Author/Authors :
Koren، نويسنده , , Y.، نويسنده , , Carmel، نويسنده , , L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
12
From page :
459
To page :
470
Abstract :
We present a novel family of data-driven linear transformations, aimed at finding low-dimensional embeddings of multivariate data, in a way that optimally preserves the structure of the data. The well-studied PCA and Fisher’s LDA are shown to be special members in this family of transformations, and we demonstrate how to generalize these two methods such as to enhance their performance. Furthermore, our technique is the only one, to the best of our knowledge, that reflects in the resulting embedding both the data coordinates and pairwise relationships between the data elements. Even more so, when information on the clustering (labeling) decomposition of the data is known, this information can also be integrated in the linear transformation, resulting in embeddings that clearly show the separation between the clusters, as well as their internal structure. All of this makes our technique very flexible and powerful, and lets us cope with kinds of data that other techniques fail to describe properly.
Keywords :
Feature extraction , Linear transformation , Fisher’s linear discriminant analysis. , Projection , Dimensionality reduction , visualization , classification , Principalcomponent analysis
Journal title :
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Serial Year :
2004
Journal title :
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Record number :
401772
Link To Document :
بازگشت