Title of article :
Complex Logarithmic Views for Small Details in Large Contexts
Author/Authors :
Bottger، نويسنده , , J.، نويسنده , , Balzer، نويسنده , , M.، نويسنده , , Deussen، نويسنده , , O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Commonly known detail in context techniques for the two-dimensional Euclidean space enlarge details and shrink their
context using mapping functions that introduce geometrical compression. This makes it difficult or even impossible to recognize
shapes for large differences in magnification factors. In this paper we propose to use the complex logarithm and the complex root
functions to show very small details even in very large contexts. These mappings are conformal, which means they only locally rotate
and scale, thus keeping shapes intact and recognizable. They allow showing details that are orders of magnitude smaller than their
surroundings in combination with their context in one seamless visualization. We address the utilization of this universal technique for
the interaction with complex two-dimensional data considering the exploration of large graphs and other examples.
Keywords :
complex logarithm , conformal mappings , Detail in context , Interaction. , Analytic functions
Journal title :
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Journal title :
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS