Title of article :
Supercapacitor thermal- and electrical-behaviour modelling using ANN
Author/Authors :
Marie-Francoise، نويسنده , , J.-N.; Gualous، نويسنده , , H.; Berthon، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
The paper presents the development of a modelling tool for evaluation of the thermal
and electrical behaviour of supercapacitors, using an artificial neural network (ANN). The
principle consists of a black-box multiple-input single-output (MISO) model. The system inputs
are temperature, current and supercapacitor values, and the output is the supercapacitor voltage.
The relationship between inputs and output is established by the learning and the validation of the
ANNmodel from experimental charge and discharge cycles of supercapacitors at different currents
and different temperatures. Once the training parameters are known, the ANN simulator can
predict different operational parameters of the supercapacitors. The update parameters of the
ANN model are performed using the Levenberg–Marquardt method to minimise the error
between the output of the system and the predicted output. This methodology using ANN
networks may provide useful information on the transient behaviour of the supercapacitors taking
into account thermal influences. Experimental results will also validate the simulation results.
Journal title :
IEE Proceedings Electric Power Applications
Journal title :
IEE Proceedings Electric Power Applications