Title of article :
Translation invariance and sampling theorem of wavelet
Author/Authors :
Qiao Wang، نويسنده , , Lenan Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
4
From page :
1471
To page :
1474
Abstract :
The sampling theorem for wavelet spaces built by Walter (1992) lacks the translation invariance except for Walterʹs weak translation invariant wavelet, i.e., Meyerʹs wavelet. Indeed, we must know a priori the shift offset a in the samples {f(n+a);n∈Z}; otherwise, the waveform cannot be recovered since the interpolation function is dependent on this offset. In this correspondence, we generalize our metric functional to metrize weak shiftability and find a somewhat surprising result that the B spline wavelets of order n⩾3 are degenerate shiftable. Thus, we can recover approximately the waveform by double sampling without any information on shift offset a
Keywords :
wavelet. , Sampling theorem , Translation invariance
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Serial Year :
2000
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Record number :
403261
Link To Document :
بازگشت