Title of article :
Estimating the entropy of a signal with applications
Author/Authors :
J.-F. Bercher and C. Berland ، نويسنده , , J.-F.، نويسنده , , Vignat، نويسنده , , C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
In this paper, we present a new estimator of the entropy
of continuous signals. We model the unknown probability
density of data in the form of an AR spectrum density and use regularized
long-AR models to identify the AR parameters. We then
derive both an analytical expression and a practical procedure for
estimating the entropy from sample data.We indicate howto incorporate
recursive and adaptive features in the procedure. We evaluate
and compare the new estimator with other estimators based
on histograms, kernel density models, and order statistics. Finally,
we give several examples of applications. An adaptive version of
our entropy estimator is applied to detection of law changes, blind
deconvolution, and source separation.
Keywords :
spectrum analysis. , AR processes , entropy estimation , parametricmethods , regularization
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING