Title of article :
Estimating the entropy of a signal with applications
Author/Authors :
J.-F. Bercher and C. Berland ، نويسنده , , J.-F.، نويسنده , , Vignat، نويسنده , , C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
8
From page :
1687
To page :
1694
Abstract :
In this paper, we present a new estimator of the entropy of continuous signals. We model the unknown probability density of data in the form of an AR spectrum density and use regularized long-AR models to identify the AR parameters. We then derive both an analytical expression and a practical procedure for estimating the entropy from sample data.We indicate howto incorporate recursive and adaptive features in the procedure. We evaluate and compare the new estimator with other estimators based on histograms, kernel density models, and order statistics. Finally, we give several examples of applications. An adaptive version of our entropy estimator is applied to detection of law changes, blind deconvolution, and source separation.
Keywords :
spectrum analysis. , AR processes , entropy estimation , parametricmethods , regularization
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Serial Year :
2000
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Record number :
403286
Link To Document :
بازگشت