Title of article :
ForWaRD: Fourier-Wavelet Regularized Deconvolution for Ill-Conditioned Systems
Author/Authors :
.R. Neelamani، نويسنده , , H. Choi، نويسنده , , and R. Baraniuk، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
16
From page :
418
To page :
433
Abstract :
We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform’s economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain’s economical representation of piecewise smooth signals and images.We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD’s MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD’s performance.
Keywords :
Restoration , waveletvaguelette , wavelets. , Deblurring , deconvolution
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Serial Year :
2004
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Record number :
403478
Link To Document :
بازگشت