Abstract :
The three-dimensional continuous energy Monte Carlo code MCNP4C was used to develop a versatile and accurate full-core model of the 3 MW TRIGA MARK II research reactor at Atomic Energy Research Establishment, Savar, Dhaka, Bangladesh. The model represents in detail all components of the core with literally no physical approximation. All fresh fuel and control elements as well as the vicinity of the core were precisely described. Validation of the JENDL-3.3 and ENDF/BVI continuous energy cross-section data for MCNP4C was performed against some well-known benchmark lattices. For TRIGA analysis, data from JENDL-3.3 and ENDF/B-VI in combination with the JENDL-3.2 and ENDF/B-V data files (for natZr, natMo, natCr, natFe, natNi, natSi, and natMg) at 300 K evaluations were used. Full S(α, β) scattering functions from ENDF/B-V for Zr in ZrH, H in ZrH and water molecule, and for graphite were used in both cases. The validation of the model was performed against the criticality and reactivity benchmark experiments of the TRIGA reactor. There is 20.0% decrease of thermal neutron flux occurs when the thermal library is removed during the calculation. Effect of erbium isotope that is present in the TRIGA fuel was also studied. In addition to the effective multiplication values, the well-known integral parameters: δ28, δ25, ρ25, and C* were calculated and compared for both JENDL3.3 and ENDF/B-VI libraries and were found to be in very good agreement. Results are also reported for most of the analyses performed by JENDL-3.2 and ENDF/B-V data libraries.