Author/Authors :
A.G. Buchan، نويسنده , , C.C. Pain، نويسنده , , M.D. Eaton، نويسنده , , R.P. Smedley-Stevenson، نويسنده , , A.J.H. Goddard، نويسنده ,
Abstract :
This paper describes a new second generation spherical wavelet method for discretising the angular dimension of the Boltzmann transport equation. The approximation scheme provides a spectrally accurate expansion of the angular domain using Chebyshev collocation polynomials mapped into a wavelet space. Our method extends the work in Buchan et al. [Buchan, A., Pain, C.C., Eaton, M.D., Smedley-Stevenson, R., Goddard, A., Oliveira, C.D., submitted for publication. Linear and quadratic hexahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation. Nucl. Sci. Eng.; Buchan, A., Pain, C.C., Eaton, M.D., Smedley-Stevenson, R., Goddard, A., Oliveira, C.D., 2005. Linear and quadratic octahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation. Ann. Nucl. Energy 32, 1224–1273] of using low order finite element based wavelets. Here we show the spectral wavelets can improve on these techniques by providing more accurate representation of the angular fluxes. This also implies the method can provide improved solutions to those of the established methods SN and PN by reducing ray-effects and possibly Gibbs oscillations. We demonstrate this using a set of demanding mono-energetic particle transport problems.