Author/Authors :
Yeshayahou Levy، نويسنده , , Daniel L. Bulzan، نويسنده ,
Abstract :
A spray combustor, with flow velocities in the laminar range, exhibits a unique operating mode where large amplitude, self-induced oscillations of the flame shape occur. The phenomenon, not previously encountered, only occurs when fuel is supplied in the form of fine liquid droplets and does not occur when fuel is supplied in gaseous form. Several flow mechanisms are coupled in such a fashion as to trigger and maintain the oscillatory motion of the flame. These mechanisms include heat transfer and evaporation processes, dynamics of two-phase flows, and effects of gravity (buoyancy forces). An interface volume, lying between the fuel nozzle and the flame was found to be the most susceptible to gravity effects, and postulated to be responsible for inducing the oscillatory motion. Heptane fuel was used in the majority of the tests.