Author/Authors :
Petar Blanusa، نويسنده , , William P. Goss، نويسنده , , Hartwig Roth، نويسنده , , Peter Weitzmannn، نويسنده , , Claus F. Jensen، نويسنده , , Svend Svendsen، نويسنده , , Hakim Elmahdy، نويسنده ,
Abstract :
The intent of this paper is to describe and compare the two different two-dimensional frame/spacer heat transfer calculation methodologies used in North America (FRAME [EEL. The FRAMEplus Toolkit for Heat Transfer Assessment of Building Components, Version 3.0, Enermodal Engineering, Kichener, Ontario, Canada, 1995], THERM [LBNL. THERM 2: PC Program for Analyzing Two-Dimensional Heat Transfer Through Building Products, LBL-37371, Windows and Delighting Group, Lawrence Berkeley National Laboratory, Berkeley, CA, 1998], ASHRAE SPC 142P [ASHRAE. Standard Method for Determining and Expressing the Heat Transfer and Total Optical Properties of Fenestration Products, Public Review Draft of Standard 142P, American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, 1998]) and in Europe [ISO 10077-2. Thermal Performance of Windows, Doors and Shutters–Calculation of Thermal Transmittance—Part 2: Numerical Method for Frames, International Standards Organization, Geneva, 2003]. The two approaches, called the ASHRAE and ISO methods, are different in the way they treat the effect of the glazing spacer on the heat transfer through the frame and the glazing unit near the frame. The ASHRAE method assumes that the spacer effects both the heat transfer through the frame and the heat transfer through the glazing in an “edge-of glass” region 63.5 mm (2.5 in.) from the glazing/frame sight line. The ISO method assumes that the additional heat transfer due to the existence of the spacer is proportional to the glazing/frame sightline distance that is also proportional to the total glazing spacer length.
Keywords :
ASHRAE , ISO , Frame , Thermal transmittance