Title of article :
A compliant track link model for high-speed, high-mobility tracked vehicles
Author/Authors :
H. S. Ryu، نويسنده , , D. S. Bae، نويسنده , , J. H. CHOI and S. J. LEE، نويسنده , , A. A. Shabana and R. Schwertassek، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
22
From page :
1481
To page :
1502
Abstract :
Several modelling methods have recently been developed for the dynamic analysis of low-speed tracked vehicles. These methods were used to demonstrate the signi cant e ect of the force of the interaction be- tween the track links and vehicle components, even when low speeds are considered. It is the objective of this investigation to develop compliant track link models and investigate the use of these models in the dy- namic analysis of high-speed, high-mobility tracked vehicles. There are two major di culties encountered in developing the compliant track models discussed in this paper. The rst is due to the fact that the integration step size must be kept small in order to maintain the numerical stability of the solution. This solution includes high oscillatory signals resulting from the impulsive contact forces and the use of sti compliant elements to represent the joints between the track links. The characteristics of the compliant elements used in this investigation to describe the track joints are measured experimentally. A numerical integration method having a relatively large stability region is employed in order to maintain the solution accuracy, and a variable step size integration algorithm is used in order to improve the e ciency. The second di culty encountered in this investigation is due to the large number of the system equations of motion of the three-dimensional multibody tracked vehicle model. The dimensionality problem is solved by decoupling the equations of motion of the chassis subsystem and the track subsystems. Recursive methods are used to obtain a minimum set of equations for the chassis subsystem. Several simulations scenarios including an accelerated motion, high-speed motion, braking, and turning motion of the high-mobility vehicle are tested in order to demonstrate the e ectiveness and validity of the methods proposed in this investigation
Keywords :
explicit integration , variable time-step , tracked-vehicle , Suspension , compliant track , contact forces
Journal title :
International Journal for Numerical Methods in Engineering
Serial Year :
2000
Journal title :
International Journal for Numerical Methods in Engineering
Record number :
424097
Link To Document :
بازگشت