Title of article :
Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case
Author/Authors :
Jacob Fish، نويسنده , , Wen Chen، نويسنده , , Gakuji Nagai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
Non-local dispersive model for wave propagation in heterogeneous media is derived from the higherorder
mathematical homogenization theory with multiple spatial and temporal scales. In addition to the
usual space–time co-ordinates, a fast spatial scale and a slow temporal scale are introduced to account
for rapid spatial uctuations of material properties as well as to capture the long-term behaviour of the
homogenized solution. By combining various order homogenized equations of motion the slow time
dependence is eliminated giving rise to the fourth-order di erential equation, also known as a ‘bad’
Boussinesq problem. Regularization procedures are then introduced to construct the so-called ‘good’
Boussinesq problem, where the need for C1 continuity is eliminated. Numerical examples are presented
to validate the present formulation
Keywords :
non-local , gradient , homogenization , Multiple scales , Dispersive , wave propagation
Journal title :
International Journal for Numerical Methods in Engineering
Journal title :
International Journal for Numerical Methods in Engineering