Title of article :
Improvement of the asymptotic behaviour of the Euler-Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals
Author/Authors :
U. Jin Choi، نويسنده , , Shin Wook Kim، نويسنده , , Beong In Yun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
In the recent works (Commun. Numer. Meth. Engng 2001; 17:881; to appear), the superiority of
the non-linear transformations containing a real parameter b = 0 has been demonstrated in numerical
evaluation of weakly singular integrals. Based on these transformations, we define a so-called parametric
sigmoidal transformation and employ it to evaluate the Cauchy principal value and Hadamard finitepart
integrals by using the Euler–Maclaurin formula. Better approximation is expected due to the
prominent properties of the parametric sigmoidal transformation of whose local behaviour near x = 0
is governed by parameter b.
Through the asymptotic error analysis of the Euler–Maclaurin formula using the parametric sigmoidal
transformation, we can observe that it provides a distinct improvement on its predecessors using
traditional sigmoidal transformations. Numerical results of some examples show the availability of the
present method
Keywords :
sigmoidal transformation , Cauchy principal value/Hadamard finite-part integral , Euler–Maclaurin formula
Journal title :
International Journal for Numerical Methods in Engineering
Journal title :
International Journal for Numerical Methods in Engineering