Title of article :
A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems
Author/Authors :
G. Y. Zhang، نويسنده , , G. R. Liu، نويسنده , , Y. Y. Wang and Y. Y . Zhu، نويسنده , , H. T. Huang، نويسنده , , Z. H. Zhong، نويسنده , , G. Y. Li، نويسنده , , X. Han، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
20
From page :
1524
To page :
1543
Abstract :
Linearly conforming point interpolation method (LC-PIM) is formulated for three-dimensional elasticity problems. In this method, shape functions are generated using point interpolation method by adopting polynomial basis functions and local supporting nodes are selected based on the background cells. The shape functions so constructed have the Kronecker delta functions property and it allows straightforward imposition of point essential boundary conditions. Galerkin weak form is used for creating discretized system equations, and a nodal integration scheme with strain-smoothing operation is used to perform the numerical integration. The present LC-PIM can guarantee linear exactness and monotonic convergence for the numerical results. Numerical examples are used to examine the present method in terms of accuracy, convergence, and efficiency. Compared with the finite element method using linear elements, the LC-PIM can achieve better efficiency, and higher accuracy especially for stresses. Copyright q 2007 John Wiley & Sons, Ltd.
Keywords :
mesh free , Nodal integration , threedimensional , Point interpolation method , linearly conforming
Journal title :
International Journal for Numerical Methods in Engineering
Serial Year :
2007
Journal title :
International Journal for Numerical Methods in Engineering
Record number :
426176
Link To Document :
بازگشت