Title of article :
A Simple Quasi-2D Numerical Model of a Thermogage Furnace
Author/Authors :
Khaled Chahine، نويسنده , , Mark Ballico، نويسنده , , John Reizes and Jafar Madadnia ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
10
From page :
2118
To page :
2127
Abstract :
A simple quasi-2D model for the temperature distribution in a graphite tube furnace is preseInted. The model is used to estimate the temperature gradients in the furnace at temperatures above which contact sensors can be used, and to assist in the redesign of the furnace heater element to improve the temperature gradients. The Thermogage graphite tube furnace is commonly used in many NMIs as a blackbody source for radiation thermometer calibration and as a spectral irradiance standard. Although the design is robust, easy to operate and can change temperature rapidly, it is limited by its effective emissivity of typically 99.5–99.8%. At NMIA, the temperature gradient along the tube is assessed using thermocouples up to about 1,500◦C, and the blackbody emissivity is calculated from this. However, at higher operating temperatures (up to 2,900◦C), it is impractical to measure the gradient, and we propose to numerically model the temperature distributions used to calculate emissivity. In another paper at this conference, the model is used to design an optimized heater tube with improved temperature gradients. In the model preseInted here, the 2-D temperature distribution is simplified to separate the axial and radial temperature distributions within the heater tube and the surrounding insulation. Literature data for the temperature dependence of the electrical and thermal conductivities of the graphite tube were coupled to models for the thermal conductivity of the felt insulation, particularly including the effects of allowing for a gas mixture in the insulation. Experimental measurements of the
Keywords :
ATJ graphite · Blackbody · Graphite felt · Numerical model · Thermogage
Journal title :
International Journal of Thermophysics
Serial Year :
2007
Journal title :
International Journal of Thermophysics
Record number :
427579
Link To Document :
بازگشت