Title of article :
Time-domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives
Author/Authors :
J. M. Carcione، نويسنده , , F. Cavallini، نويسنده , , F. Mainardi، نويسنده , , A. Hanyga، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2002
Abstract :
Kjartansson’s constant-Q model is solved in the time-domain using a new modeling
algorithm based on fractional derivatives. Instead of time derivatives of order 2, Kjartansson’s model
requires derivatives of order 2c, with 0 < c < 1=2, in the dilatation-stress formulation. The derivatives are
computed with the Gru¨ nwald-Letnikov and central-difference approximations, which are finite-difference
extensions of the standard finite-difference operators for derivatives of integer order. The modeling uses the
Fourier method to compute the spatial derivatives, and therefore can handle complex geometries. A
synthetic cross-well seismic experiment illustrates the capabilities of this novel modeling algorithm.
Keywords :
Numerical modeling , seismology. , Viscoelastic waves , fractional calculus
Journal title :
Pure and Applied Geophysics
Journal title :
Pure and Applied Geophysics