Abstract :
We apply the normal mode representation of tsunami waves, as introduced by WARD
(1980) to the systematic study of the excitation of far-field tsunamis by both dislocation sources
(represented by double-couples of moment M0), and landslides (represented by single forces). Using
asymptotic representations of the continuation of the tsunami eigenfunction into the solid Earth, we derive
analytical expressions of the spectral amplitude generated by both systems. We show that the quadrupolar
corrections defined by DAHLEN (1993) in the case of landslides can result in an increase of 1 to 2 orders of
magnitude of the effective force. Even so, the spectrum of tsunami waves generated by landslides is found
to be offset significantly to relatively high frequencies (10 mHz), where dispersion becomes important and
eventually diminishes time-domain amplitudes. We proceed to calculate the total energy delivered into the
tsunami modes by integrating the energy of multiplets for an average source geometry. In the case of
dislocation sources, and taking into account the corner frequency of the source, we reproduce the scaling
with M4=3
0 which was derived from purely static arguments by KAJIURA (1981). We compare the directivity
patterns of far-field tsunami waves by dislocations and landslides, and conclude that the latter cannot give
rise to pronounced lobes of directivity for physically acceptable values of the velocity of the slide.
Directivity thus constitutes a robust discriminant of the nature of the source which, when applied to the
1946 Aleutian tsunami in the far-field, requires generation by a dislocative source.
Keywords :
normal modes , directivity. , Tsumani theory , landslides