Title of article :
The intensity of precipitation during extratropical cyclones in global warming simulations: a link to cyclone intensity?
Author/Authors :
I. G. WATTERSON، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
16
From page :
82
To page :
97
Abstract :
Simulations of global warming over the coming century from two CSIRO GCMs are analysed to assess changes in the intensity of extratropical cyclones, and the potential role of increased latent heating associated with precipitation during cyclones. A simple surface cyclone detection scheme is applied to a four-member ensemble of simulations from the Mark 2 GCM, under rising greenhouse gas concentrations. The seasonal distribution of cyclones appears broadly realistic during 1961–1990. By 2071–2100, with 3 K global warming, numbers over 20◦N to 70◦N decrease by 6% in winter and 2% annually, with similar results for the south. The average intensity of cyclones, from relative central pressure and other measures, is largely unchanged however. 30-yr extremes of dynamic intensity also show little clear change, including values averaged over continents. Mean rain rates at cyclone centres are typically at least double rates from all days. Rates during cyclones increase by an average 14% in the northern winter under global warming. Rates over adjacent grid squares and during the previous day increase similarly, as do extreme rates. Results from simulations of the higher-resolution (1.8◦ grid) Mark 3 GCM are similar, with widespread increases in rain rates but not in cyclone intensity. The analyses suggest that latent heating during storms increases, as anticipated due to the increased moisture capacity of the warmer atmosphere. However, any role for enhanced heating in storm development in the GCMs is apparently masked by other factors. An exception is a 5% increase in extreme intensity around 55◦S in Mark 3, despite decreased numbers of lows, a factor assessed using extreme value theory. Further studies with yet higher-resolution models may be needed to examine the potential realism of these results, particularly with regard to extremes at smaller scale
Journal title :
Tellus. Series A
Serial Year :
2006
Journal title :
Tellus. Series A
Record number :
436572
Link To Document :
بازگشت