Title of article :
Prediction of state-of-charge effects on lead-acid battery characteristics using neural network parameter modifier
Author/Authors :
N. Abolhassani Monfared، نويسنده , , N. Gharib، نويسنده , , H. Moqtaderi، نويسنده , , M. Hejabi، نويسنده , , M. Amiri، نويسنده , , F. Torabi، نويسنده , , A. Mosahebi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
4
From page :
932
To page :
935
Abstract :
In this study, impedances of SABA BATTERY 6SB6 in different SOCs are applied to obtain the equivalent circuit parameters using Champlin method in different SOCs. Champlin method answers are used as Zview initial values to get fit results and the Artificial Neural Network (ANN) is trained by these final results. The presented ANN inputs are SOCs and outputs are equivalent circuit parameters. The completed network responses are perfectly adjusted to the experimental parameters. Accuracy of this method has been verified by using the measured data and they have shown a high consistency to experiment. So that a model is extracted in which one can approach an equivalent circuit model with specified parameters simply by entering the SOC.
Keywords :
neural network , Lead-acid battery , Equivalent circuit , state-of-charge
Journal title :
Journal of Power Sources
Serial Year :
2006
Journal title :
Journal of Power Sources
Record number :
437549
Link To Document :
بازگشت