Author/Authors :
M. Burghoff، نويسنده , , G. Richter، نويسنده ,
Abstract :
In order to reach a statistically sound conclusion on the suitability of maintenance-free, lead-calcium automotive batteries for practical operations, the failure behaviour of such batteries has been observed in a large-scale experiment carried out by Mercedes Benz AG and Robert Bosch GmbH in different climatic zones of North America. The results show that the average failure behaviour is not significantly different to that of batteries from other manufacturers using other grid alloy systems and operated under otherwise identical conditions; the cumulative failure probability after 30 months is 17%. The principal causes of failure are: (i) early failure: transport damage, filling errors, and short-circuits due to the outer plates being pushed up during plate-block assembly (manufacturing defect); (ii) statistical failure: short-circuits due to growth of positive plates caused by a reduction in the mechanical strength of the cast positive grid as a result of corrosion; (iii) late failure due to an increased occurrence of short-circuits, especially frequent in outer cell facing the engine of the vehicle (subjected to high temperature), and to defects caused by capacity decay. As expected, the batteries exhibit extremely low water loss in each cell. The poor cyclical performance of stationary batteries, caused by acid stratification and well-known from laboratory tests, has no detrimental effect on the batteries in use. After a thorough analysis of the corrosion process, the battery manufacturer changed the grid alloy and the method of its production, and thus limited the corrosion problem with cast lead-calcium grids and with it the possibility of plate growth. The mathematical methods used in this study, and in particular the characteristic factors derived from them, have proven useful for assessing the suitability of automotive batteries.