Title of article :
Electrochemical performance of Ba0.5Sr0.5CoxFe1−xO3−δ (x = 0.2–0.8) cathode on a ScSZ electrolyte for intermediate temperature SOFCs
Author/Authors :
Yong Ho Lim، نويسنده , , Jun Lee، نويسنده , , Jong Seol Yoon، نويسنده , , Chul Eui Kim، نويسنده , , Hae Jin Hwang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
Intermediate temperature solid oxide fuel cell cathode materials (Ba, Sr)CoxFe1−xO3−δ [x = 0.2–0.8] (BSCF), were synthesized by a glycine-nitrate process (GNP) using Ba(NO3)2, Sr(NO3)2, Co(NO3)2·6H2O, and Fe(NO3)3·9H2O as starting materials and glycine as an oxidizer and fuel. Electrolyte-supported symmetric BSCF/GDC/ScSZ/GDC/BSCF cells consisting of porous BSCF electrodes, a GDC buffer layer, and a ScSZ electrolyte were fabricated by a screen printing technique, and the electrochemical performance of the BSCF cathode was investigated at intermediate temperatures (500–700 °C) using AC impedance spectroscopy. Crystallization behavior was found to depend on the pH value of the precursor solution. A highly acidic precursor solution increased the single phase perovskite formation temperature. In the case of using a precursor solution with pH 2, a single perovskite phase was obtained at 1000 °C. The thermal expansion coefficient of BSCF was gradually increased from 24 × 10−6 K−1 for BSCF (x = 0.2) to 31 × 10−6 K−1 (400–1000 °C) for BSCF (x = 0.8), which resulted in peeling-off of the cathode from the GDC/ScSZ electrolyte. Only the BSCF (x = 0.2) cathode showed good adhesion to the GDC/ScSZ electrolyte and low polarization resistance. The area specific resistance (ASR) of the BSCF (x = 0.2) cathode was 0.183 Ω cm2 at 600 °C. The ASR of other BSCF (x = 0.4, 0.6, and 0.8) cathodes, however, was much higher than that of BSCF (x = 0.2).
Keywords :
cathode , BSCF , Polarization resistance , ScSZ , SOFC
Journal title :
Journal of Power Sources
Journal title :
Journal of Power Sources