Title of article :
A method for approximating the density of maximum-likelihood and maximum a posteriori estimates under a Gaussian noise model
Author/Authors :
Craig K. Abbey، نويسنده , , Eric Clarkson، نويسنده , , Harrison H. Barrett، نويسنده , , Stefan P. Müller، نويسنده , , Frank J. Rybicki، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
9
From page :
395
To page :
403
Abstract :
The performance of maximum-likelihood (ML) and maximum a posteriori (MAP) estimates in non-linear problems at low data SNR is not well predicted by the Cramér-Rao or other lower bounds on variance. In order to better characterize the distribution of ML and MAP estimates under these conditions, we derive a point approximation to density values of the conditional distribution of such estimates. In an example problem, this approximate distribution captures the essential features of the distribution of ML estimates in the presence of Gaussian-distributed noise.
Keywords :
Cramér-Rao bound , Maximum-likelihood estimation , quantitation
Journal title :
Medical Image Analysis
Serial Year :
1998
Journal title :
Medical Image Analysis
Record number :
449673
Link To Document :
بازگشت