Title of article :
Initial stages of hydration and Zn substitution/occupation on hydroxyapatite (0 0 0 1) surfaces
Author/Authors :
Xiaoyan Ma، نويسنده , , Donald E. Ellis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
257
To page :
265
Abstract :
The initial stages of the hydration process have been simulated on a single-Ca(I) terminated hydroxyapatite (0 0 0 1) surface in step-by-step fashion using periodic slab density functional theory (DFT). Adsorption configurations and energetic properties have been described at different H2O coverage. At low H2O coverage, oxygen prefers to form Ca O bonds with surface Ca cations, but as coverage increases, H2O tends to loosely float on the already-formed water layer. The height of the first layer H2O relative to the surface is found to be 1.6 Å. The hydration process does not cause the decomposition of surface phosphate groups and hydroxyl channel, but does affect the energetics of subsequent Zn substitution and occupation on Ca(I) and Ca(II) sites. The Ca(II) vacancy site is found to be energetically more favorable for occupation due to less spatial constraint. This suggested mechanism of preferential occupation is different from previous attempts to explain the cation substitution site preference in bulk by ionic radius and electronegativity differences.
Keywords :
Hydration , ion exchange , Hydroxyapatite , DFT , Preferential site occupancy
Journal title :
Biomaterials
Serial Year :
2008
Journal title :
Biomaterials
Record number :
482832
Link To Document :
بازگشت