Title of article :
Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation
Author/Authors :
ORegan، Donal نويسنده , , Ji، Chunyan نويسنده , , Jiang، Daqing نويسنده , , Shi، Ningzhong نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
This paper discusses a randomized logistic equation dx(t)=x(t)[(a-bx(t))dt+x(theta)(t)dB(t)] with initial value x(0)=x0>0, where B(t) is a standard one-dimension Brownian motion, and (theta)(epsilon)(0, 0.5). We show that the positive solution of the stochastic differential equation does not explode at any finite time under certain conditions. In addition, we study the existence, uniqueness, boundedness, stochastic persistence and global stability of the positive solution.
Keywords :
generalized Newtonian fluids , variational methods , a posteriori error estimates
Journal title :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Journal title :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES