Author/Authors :
Luque، Noelia نويسنده , , Rubio، Soledad نويسنده , , Perez-Bendito، Dolores نويسنده ,
Abstract :
The suitability of coacervates for the preservation of organic pollutants after their extraction from water samples was investigated for the first time. Acid-induced sodium dodecanesulfonic acid (SDSA) micelle-based coacervates were selected for this purpose. Their capacity to preserve benzalkonium homologue (C12, C14 and C16) surfactants (BASs) and different polycyclic aromatic hydrocarbons (PAHs) [benzo(a)pyrene (BaP), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(ghi)perylene (BghiP), benzo(a) anthracene (BaA) and indene(1,2,3-c-d)pyrene (IP)] was investigated. BASs and PAHs were efficiently extracted by the coacervate by formation of mixed aggregates and hydrophobic interactions, respectively. Their stability into the coacervate was investigated under three temperature conditions (room temperature, 4 °C and -20 °C) and two hydrochloric acid concentrations (3.75 M and 4.2 M), which was used to induce coacervation. No losses were observed during at least 3 months at the different experimental conditions tested. The increase of the temperature up to 35 °C for a month did not affect the stability of the target compounds. No influence of the water matrix (distilled, river or wastewater) on the stabilization of BASs and PAHs was observed. The high-stabilizing capacity of the coacervate for the target compounds and its low volume make easy the transport and storage of analytes.