Title of article :
Homeostatic plasticity improves signal propagation in continuous-time recurrent neural networks
Author/Authors :
Hywel Williams، نويسنده , , Jason Noble، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
8
From page :
252
To page :
259
Abstract :
Continuous-time recurrent neural networks (CTRNNs) are potentially an excellent substrate for the generation of adaptive behaviour in artificial autonomous agents. However, node saturation effects in these networks can leave them insensitive to input and stop signals from propagating. Node saturation is related to the problems of hyper-excitation and quiescence in biological nervous systems, which are thought to be avoided through the existence of homeostatic plastic mechanisms. Analogous mechanisms are here implemented in a variety of CTRNN architectures and are shown to increase node sensitivity and improve signal propagation, with implications for robotics. These results lend support to the view that homeostatic plasticity may prevent quiescence and hyper-excitation in biological nervous systems.
Keywords :
Homeostatic plasticity , Signal propagation , Continuous-time recurrent neural network
Journal title :
BioSystems
Serial Year :
2007
Journal title :
BioSystems
Record number :
497781
Link To Document :
بازگشت