Author/Authors :
Buhmann، Joachim M. نويسنده , , Fischer، Bernd نويسنده , , Roth، Volker نويسنده , , Roos، Franz نويسنده , , Grossmann، Jonas نويسنده , , Baginsky، Sacha نويسنده , , Widmayer، Peter نويسنده , , Gruissem، Wilhelm نويسنده ,
Abstract :
De novo sequencing of peptides poses one of the most challenging tasks in data analysis for proteome research. In this paper, a generative hidden Markov model (HMM) of mass spectra for de novo peptide sequencing which constitutes a novel view on how to solve this problem in a Bayesian framework is proposed. Further extensions of the model structure to a graphical model and a factorial HMM to substantially improve the peptide identification results are demonstrated. Inference with the graphical model for de novo peptide sequencing estimates posterior probabilities for amino acids rather than scores for single symbols in the sequence. Our model outperforms stateof-the-art methods for de novo peptide sequencing on a large test set of spectra.