Title of article :
Induction of base damage in dna solutions by ultrasonic cavitation
Author/Authors :
Alfred F. Fuciarelli، نويسنده , , Ellen C. Sisk، نويسنده , , Ronald M. Thomas، نويسنده , , Douglas L. Miller، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
8
From page :
231
To page :
238
Abstract :
Ultrasound can damage macromolecules by the mechanical (shearing) and sonochemical (free radical generating) action of ultrasonic cavitation. Attributing macromolecular damage to either direct mechanical stress or to indirect mechanisms involving free radicals or other sonochemicals is a challenging problem. DNA damage induced by ultrasound was evaluated by measuring the formation of purine and pyrimidine products using combined gas chromatography-mass spectrometry with selected ion monitoring. Samples of DNA were prepared in 10 mmol dm−3 phosphate buffered saline (pH 7.4) and saturated with a mixture of argon:oxygen (3:1). Continuous 2.17 MHz ultrasound exposures at 0.82 mPa spatial peak negative pressure amplitude were performed in a 60 rpm rotating tube exposure system. Hydrogen peroxide yields were measured after each exposure to quantify the cavitation activity and ranged up to 350 μmol dm−3 for 1-h exposures. Purine and pyrimidine products identified were those typically observed following exposure of DNA to hydroxyl radical-generating systems, such as ionizing radiation, hypoxanthine/xanthine oxidase, or hydrogen peroxide in the presence of transition metal ions. The yields of these products were directly correlated with cavitation activity as measured by residual hydrogen peroxide concentrations. The yields of DNA products increased in the following order: thymine glycolnot, vert, similarcytosine glycol>8-oxoAde>:FAPyAde-5-HMUnot, vert, similar5,6-diOHCyt>FAPyGua. Unexpectedly, 8-oxoguanine did not exhibit a dose-dependent increase above background levels, and this observation is inconsistent with processes involving metal ion-dependent formation of hydroxyl radicals from hydrogen peroxide. In addition, the product yields were far too large to result from the residual hydrogen peroxide. Thus, ultrasonic cavitation appears to have a mode of action distinct from either ionizing radiation or formation of hydroxyl radicals via Fenton-like reaction with transition metals.
Keywords :
Ultrasound , DNA damage , gas chromatography-mass spectrometry , free radicals
Journal title :
Free Radical Biology and Medicine
Serial Year :
1995
Journal title :
Free Radical Biology and Medicine
Record number :
517028
Link To Document :
بازگشت