Title of article :
Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics
Author/Authors :
Ruth E. Aldridge، نويسنده , , Tim Chan، نويسنده , , Christine J. van Dalen، نويسنده , , Revathy Senthilmohan، نويسنده , , Marti Winn، نويسنده , , Per Venge، نويسنده , , G. Ian Town، نويسنده , , Anthony J. Kettle، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
10
From page :
847
To page :
856
Abstract :
Eosinophil peroxidase and myeloperoxidase use hydrogen peroxide to produce hypobromous acid and hypochlorous acid. These powerful oxidants may damage the lungs if they are produced as part of the inflammatory response in asthma. The aim of this study was to determine if peroxidases generate hypohalous acids in the airways of individuals with stable asthma, and if they affect lung function. Sputum was induced from patients with mild to moderate asthma and from healthy controls. Eosinophil peroxidase, myeloperoxidase, chlorinated and brominated tyrosyl residues, and protein carbonyls were measured in sputum supernatants. Eosinophil peroxidase protein was significantly elevated in asthmatic subjects whereas myeloperoxidase protein was not. There was significantly more 3-bromotyrosine (Br-Tyr) in proteins from the sputum of asthmatics compared to controls (0.79 vs. 0.23 mmol Br-Tyr/mol Tyr; medians p < .0001). Levels of 3-chlorotyrosine (0.23 vs. 0.14 mmol Cl-Tyr/mol Tyr; medians p = .11) and protein carbonyls (0.347 vs. 0.339 nmol/mg protein; medians p = .56) were not significantly increased in asthmatics. Levels of 3-bromotyrosine were strongly correlated with eosinophil peroxidase protein (r = 0.79, p < .0001). There were no significant correlations between the markers of oxidative stress and lung function. We conclude that eosinophil peroxidase produces substantial amounts of hypobromous acid in the airways of stable asthmatics. Although this highly reactive oxidant is a strong candidate for exacerbating inflammatory tissue damage in the lung, its role in asthma remains uncertain.
Keywords :
eosinophil peroxidase , myeloperoxidase , hypochlorous acid , free radicals , asthma , Hypobromous acid
Journal title :
Free Radical Biology and Medicine
Serial Year :
2002
Journal title :
Free Radical Biology and Medicine
Record number :
519267
Link To Document :
بازگشت