Title of article :
Vitamin C modulation of H2O2-induced damage and iron homeostasis in human cells
Author/Authors :
Tiago L. Duarte، نويسنده , , George D.D. Jones، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
11
From page :
1165
To page :
1175
Abstract :
Vitamin C (ascorbic acid, AA) is an important antioxidant in human plasma. It is clear, however, that AA has other important, nonantioxidant roles in cells. Of particular interest is its involvement in iron metabolism, since AA enhances dietary iron absorption, increases the activity of Fe2+-dependent cellular enzymes, promotes Fenton reactions in vitro, and was reported to have deleterious effects in individuals with iron overload. Nevertheless, the ability of AA to modulate iron metabolism and enhance iron-dependent damage in cells, tissues, and organisms has not been fully elucidated. Here we investigated the effect of AA on iron-mediated oxidative stress in normal human fibroblasts. Incubation with physiologically relevant concentrations of AA was not harmful but sensitised cells toward H2O2-induced, iron-dependent DNA strand breakage and cell death. We also report that AA increased the levels of intracellular catalytic iron and concomitantly modulated the expression of two well-established iron-regulated genes, ferritin and transferrin receptor. In summary, we present evidence of a novel, nonantioxidant role of AA in human cells, where it increases iron availability and enhances ROS-mediated, iron-dependent damage. We suggest that AA may exacerbate the deleterious effects of metals in vivo and promote normal tissue injury in situations associated with elevated ROS production.
Keywords :
H2O2 , Labile iron pool , transferrin receptor , ascorbic acid , DNA damage , Ferritin
Journal title :
Free Radical Biology and Medicine
Serial Year :
2007
Journal title :
Free Radical Biology and Medicine
Record number :
521099
Link To Document :
بازگشت