Title of article :
Bayesian estimation of state-space models using the Metropolis¯Hastings algorithm within Gibbs sampling
Author/Authors :
Tanizaki، Hisashi نويسنده , , Geweke، John نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
-150
From page :
151
To page :
0
Abstract :
In this paper, an attempt is made to show a general solution to nonlinear and/or non-Gaussian state-space modeling in a Bayesian framework, which corresponds to an extension of Carlin et al. (J. Amer. Statist. Assoc. 87(418) (1992) 493¯500) and Carter and Kohn (Biometrika 81(3) (1994) 541¯553; Biometrika 83(3) (1996) 589¯601). Using the Gibbs sampler and the Metropolis¯Hastings algorithm, an asymptotically exact estimate of the smoothing mean is obtained from any nonlinear and/or non-Gaussian model. Moreover, taking several candidates of the proposal density function, we examine precision of the proposed Bayes estimator.
Keywords :
Monotone decision problems , Linear programming , Minimax problems , Bayesian robustness , Empirical Bayes procedures , gamma-minimax tests
Journal title :
Computational Statistics and Data Analysis
Serial Year :
2001
Journal title :
Computational Statistics and Data Analysis
Record number :
52638
Link To Document :
بازگشت