Title of article :
An algorithm for maximizing Kendalls tau
Author/Authors :
Kowalczyk، T. نويسنده , , Niewiadomska-Bugaj، M. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
For the censored regression model, Yang (J. Amer. Statist. Assoc. 92 (1997) 977¯984) introduced a new class of estimating functions. These estimating functions produce regression estimators that are asymptotically normal with a density-free asymptotic variance that is simple to estimate reliably. In this paper we further study the estimation function of Yang by considering new classes of weights. Through extensive numerical studies, we find weights that enhance the results of the estimating function and improve upon choices previously recommended by Yang.
Keywords :
Total positivity of order two , Maximal dependence , Concentration index
Journal title :
Computational Statistics and Data Analysis
Journal title :
Computational Statistics and Data Analysis