Title of article :
Carbacyclin induces carnitine palmitoyltransferase-1 in cardiomyocytes via peroxisome proliferator-activated receptor (PPAR) δ independent of the IP receptor signaling pathway
Author/Authors :
Tadashi Kuroda، نويسنده , , Hisao Hirota، نويسنده , , Yasushi Fujio، نويسنده , , Shoko Sugiyama، نويسنده , , Mitsuru Masaki، نويسنده , , Yoshimune Hiramoto، نويسنده , , Wataru Shioyama، نويسنده , , Kitaro Okamoto، نويسنده , , Masatsugu Hori، نويسنده , , Keiko Yamauchi-Takihara، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
Prostacyclin (PGI2) and its analogues exert cardioprotective effects via the rhodopsin type membrane PGI2 receptor, IP. Peroxisome proliferator-activated receptor (PPAR) δ is a nuclear receptor abundantly expressed in cardiomyocytes and plays a pivotal role in maintaining constitutive mitochondrial fatty acid β-oxidation (FAO). Recently, a novel signaling pathway of PGI2 via PPARδ has been demonstrated in non-cardiac tissues. We therefore examined whether carbacyclin (cPGI2), a PGI2 analogue, up-regulates transcriptional expression of carnitine palmitoyltransferase-1 (CPT-1), the rate-limiting enzyme in mitochondrial FAO, via PPARδ in cardiomyocytes. Intraperitoneal injection of cPGI2 increased CPT-1 mRNA expression in murine hearts. Transcriptional activity was evaluated by PPAR responsive element (PPRE)-luciferase reporter gene assay in cultured neonatal rat cardiomyocytes. CPT-1 mRNA expression and PPRE promoter activity were significantly increased by cPGI2 in a concentration-dependent manner, where PPRE has been mapped to the promoter region of the CPT-1 gene. Moreover, the elevation of CPT-1 mRNA expression and PPRE promoter activity by cPGI2 was not abolished by H-89, a potent protein kinase A inhibitor, but was significantly inhibited in cardiomyocytes over-expressing a dominant-negative type of PPARδ. Furthermore, electrophoretic mobility shift assays demonstrated that binding of PPARδ to PPRE in the CPT-1 gene promoter is enhanced in response to cPGI2 stimulation. In addition, down-regulation of CPT-1 mRNA expression in cardiomyocytes subjected to hypoxia was attenuated by cPGI2. These results indicate that cPGI2 induces CPT-1 mRNA expression through PPARδ, independent of the IP receptor signaling pathway, suggesting a possibility that cPGI2 modulates cardiac energy metabolism by activating FAO via PPARδ.
Keywords :
CPT-1 , PPRE , Cardiac energy metabolism , PPAR , prostacyclin
Journal title :
Journal of Molecular and Cellular Cardiology
Journal title :
Journal of Molecular and Cellular Cardiology