Title of article :
Platelet interactions with calcium-phosphate-coated surfaces
Author/Authors :
Lena Kikuchi، نويسنده , , Jun Y. Park، نويسنده , , J. Charles Victor، نويسنده , , John E. Davies، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Many studies have shown that calcium-phosphate (CaP)-coated endosseous implants exhibit more peri-implant bone formation and bone contact at early healing times than uncoated implants. Since the rate of healing is influenced by blood/implant interactions and possibly the degree of blood platelet activation, the aim of this study was to determine whether the topography, microtopography, or the presence of calcium (Ca) and phosphate (PO4) ions in the implant surface plays a predominant role in platelet activation. We define the threshold between topography and microtopography as the limit of the scale range of platelets themselves; thus, a microtopographic surface is defined by one which exhibits features 3 μm. With the help of four international collaborating laboratories, we prepared 11 titanium and CaP-modified titanium surfaces each with different (micro)topographies and interrogated these surfaces with both platelet adhesion (lactate dehydrogenase activity) and platelet activation (microparticle formation and P-selectin expression) assays. Our results show that: calcium (Ca)- and phosphate (PO4)-containing surfaces of increasing surface microtopographical complexity exhibit increasing platelet activation; surfaces with similar surface microtopographies show similar levels of platelet activation regardless of the presence of Ca and PO4 in the surface; and that surface microtopography is responsible for platelet activation rather than the presence of Ca and PO4 in the surface.
Keywords :
platelet microparticles , Bone wound healing , flow cytometry , Calcium Phosphate , Coating , Surface topography , microtopography , Platelet activation , LDH assay , P-selectin
Journal title :
Biomaterials
Journal title :
Biomaterials