Title of article :
QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces
Author/Authors :
Charlotte Modin، نويسنده , , Anne-Louise Stranne، نويسنده , , Morten Foss، نويسنده , , Mogens Duch، نويسنده , , Jeannette Justesen، نويسنده , , Jacques Chevallier، نويسنده , , Lars K. Andersen، نويسنده , , Anne G. Hemmersam، نويسنده , , Finn S. Pedersen، نويسنده , , Flemming Besenbacher، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
9
From page :
1346
To page :
1354
Abstract :
The quartz crystal microbalance with dissipation (QCM-D) technique was employed to characterize initial cell adhesion in terms of attachment and spreading of pre-osteoblastic MC3T3-E1 cells on Ta and Cr surfaces. Evaluation of initial cell adhesion established a correlation between input cell number and the shifts in frequency (f) and dissipation (D). The f-shift was found to be much larger in serum-free medium as compared to a medium including serum; hence, initial cell adhesion was subsequently evaluated in serum-free medium. During the first hour of adhesion, we found a positive correlation between the QCM-D f-shift and the average area of the spread cells, as measured by cryo-scanning electron microscopy (cryo-SEM). Finally, the QCM-D technique was used to study cell adhesion on different metal oxide surfaces. Initial cell adhesion on Ta was found to induce a larger f-shift as compared to Cr, indicating larger spreading of cells on Ta. Cryo-SEM data confirmed that spreading of cells on Cr was on average only two-thirds the spreading on Ta. Our results demonstrate that the QCM-D technique is a versatile technique to quickly distinguish initial cell–surface interactions on different biomaterials.
Keywords :
Cell spreading , Cell attachment , Biocompatibility , Osteoblast , tantalum
Journal title :
Biomaterials
Serial Year :
2006
Journal title :
Biomaterials
Record number :
546768
Link To Document :
بازگشت