Title of article :
Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors
Author/Authors :
Shuwen Liu، نويسنده , , Gengfu Xiao، نويسنده , , Yibang Chen، نويسنده , , Yuxian He، نويسنده , , Jinkui Niu، نويسنده , , Carlos R. Escalante، نويسنده , , Huabao Xiong، نويسنده , , James Farmar، نويسنده , , Asim K Debnath، نويسنده , , Po Tien، نويسنده , , Shibo Jiang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
10
From page :
938
To page :
947
Abstract :
Background Studies on the fusion-inhibitory peptides derived from the heptad repeat 1 and 2 (HR1 and HR2) regions of the HIV-1 envelope glycoprotein gp41 provided crucial information on the viral fusogenic mechanism. We used a similar approach to study the fusogenic mechanism of severe-acute-respiratory-syndrome-associated coronavirus (SARS-CoV). Methods We tested the inhibitory activity against infection of two sets of peptides corresponding to sequences of SARS-CoV spike protein HR1 and HR2 regions and investigated the interactions between the HR1 and HR2 peptides by surface plasmon resonance, sedimentation equilibration analysis, circular dichroism, native polyacrylamide-gel electrophoresis, size exclusion high-performance liquid chromatography, and computer-aided homology modelling and molecule docking analysis. Findings One peptide, CP-1, derived from the HR2 region, inhibited SARS-CoV infection in the micromolar range. CP-1 bound with high affinity to a peptide from the HR1 region, NP-1. CP-1 alone had low -helicity and self-associated to form a trimer in phosphate buffer (pH 7•2). CP-1 and NP-1 mixed in equimolar concentrations formed a six-helix bundle, similar to the fusogenic core structure of HIV-1 gp41. Interpretation After binding to the target cell, the transmembrane spike protein might change conformation by association between the HR1 and HR2 regions to form an oligomeric structure, leading to fusion between the viral and target-cell membranes. At the prefusion intermediate state, CP-1 could bind to the HR1 region and interfere with the conformational changes, resulting in inhibition of SARS-CoV fusion with the target cells. CP-1 might be modifiable to increase its anti-SARS-CoV activity and could be further developed as an antiviral agent for treatment or prophylaxis of SARS-CoV infection.
Journal title :
The Lancet
Serial Year :
2004
Journal title :
The Lancet
Record number :
560556
Link To Document :
بازگشت