Title of article :
Phosphatidylcholine (PtdCho) is the most abundant phospholipid in mammalian cell membranes and is essential for cell viability. The levels of this lipid must be tightly controlled to maintain homeostasis. Therefore, changes in the rate of PtdCho synthesis
Author/Authors :
Rob Ofman، نويسنده , , Eveline M. Hogenhout، نويسنده , , Ronald J. A. Wanders، نويسنده ,
Pages :
6
From page :
89
To page :
94
Abstract :
We used the amino acid sequence of human acyl-CoA:dihydroxyacetone phosphate acyltransferase (DHAPAT) as bait to screen the database of expressed sequence tags (dbEST) and identified several partial mouse cDNA clones showing high identity. Primers were selected based on the dbEST sequences and used for amplification of this transcript from cDNA prepared from mouse skin fibroblasts. The complete nucleotide sequence was then determined and revealed an open reading frame (ORF) of 2034 bp encoding a protein consisting of 678 amino acids with a calculated molecular mass of 76 870. The deduced amino acid sequence showed high identity (80%) with that of human DHAPAT and also revealed a typical peroxisomal targeting signal type 1 (PTS1) at its extreme carboxy-terminus (alanine-lysine-leucine, AKL). Definitive evidence that this cDNA indeed codes for DHAPAT was obtained by heterologous expression in the yeast Saccharomyces cerevisiae. Northern blot analysis revealed high expression of DHAPAT especially in mouse heart, liver and testis.
Keywords :
DHAPAT , Ether lipid , biosynthesis , Peroxisome , cDNA , (Mouse)
Journal title :
Astroparticle Physics
Record number :
568240
Link To Document :
بازگشت